Abstract
The labile state of short-term memory has been known for more than a century. It has been frequently reported that immediate postlearning intervention can readily disrupt newly formed memories. However, the molecular and cellular mechanisms underlying the labile state of new memory are not understood. Using a bump-and-hole-based chemical-genetic method, we have rapidly and selectively manipulated alpha CaMKII activity levels in the mouse forebrain during various stages of the short-term memory processes. We find that a rapid shift in the alpha CaMKII activation status within the immediate 10 min after learning severely disrupts short-term memory formation. The same manipulation beyond the 15 min after learning has no effect, suggesting a critical time window for CaMKII action. We further show that during this same 10 min time window only, shifting in CaMKII activation state is capable of altering newly established synaptic weights and/or patterns. The initial 10 min of memory formation and long-term potentiation are sensitive to inducible genetic upregulation of alphaCaMKII activity. Our results suggest that molecular dynamics of CaMKII play an important role in underlying synaptic labile state and representation of short-term memory during this critical time window.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.