Abstract

Phosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site with unclear function. We provide further evidence that mutation of Ser170 to a phospho-mimetic aspartic acid residue (S170D) can have a profound inhibitory effect on the pro-apoptosis function of BAD. Furthermore, mutated BAD with an alanine substitution inhibited cell proliferation, slowing progression specifically through S-phase. We identify the kinase responsible for phosphorylation at this site as CaMKII-γ (γ isoform of Ca2+/calmodulin-dependent kinase II), but not the other three isoforms of CaMKII, revealing an extraordinary specificity among these closely related kinases. Furthermore, cytokine treatment increased BAD-Ser170-directed CaMKII-γ activity and phosphorylation of CaMKII-γ at an activating site, and CaMKII activity directed to the BAD-Ser170 site was elevated during S-phase. Treating cells with a selective inhibitor of CaMKII caused apoptosis in cells expressing BAD, but not in cells expressing the BAD-S170D mutant. The present study provides support for BAD-Ser170 phosphorylation playing a key role not only in regulating BAD's pro-apoptotic activity, but also in cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.