Abstract

The gamma-aminobutyric acid type A (GABA(A)) receptor is a pentameric ligand-gated ion channel responsible for fast synaptic inhibition in the brain. Phosphorylation of the GABA(A) receptor by serine/threonine protein kinases, at residues located in the intracellular loop between the third and fourth transmembrane domains of each subunit, can dynamically modulate receptor trafficking and function. In this study, we have assessed the effect that Ca(2+)-calmodulin-dependent protein kinase-II (CaMK-II) has on GABA(A) receptors. The intracellular application of preactivated CaMK-II failed to modulate the function of alphabeta and alphabetagamma subunit GABA(A) receptors heterologously expressed in human embryonic kidney (HEK)293 cells. However, application of similarly preactivated alpha-CaMK-II significantly potentiated the amplitudes of whole-cell GABA currents recorded from rat cultured cerebellar granule neurons and from recombinant GABA(A) receptors expressed in neuroblastoma, NG108-15, cells. The modulation by alpha-CaMK-II of current amplitude depended upon the subunit composition of GABA(A) receptors. alpha-CaMK-II potentiated GABA currents recorded from alpha1beta3 and alpha1beta3gamma2 GABA(A) receptors, but was unable to functionally modulate beta2 subunit-containing receptors. Similar results were obtained from beta2 -/- mouse cerebellar granule cell cultures and from rat granule cell cultures overexpressing recombinant alpha1beta2 or alpha1beta3 GABA(A) receptors. alpha-CaMK-II had a greater effect on the modulation of GABA responses mediated by alpha1beta3gamma2 compared with alpha1beta3 receptors, indicating a possible role for the gamma2 subunit in CaMK-II-mediated phosphorylation. In conclusion, CaMK-II can upregulate the function of GABA(A) receptors expressed in neurons or a neuronal cell line that is dependent on the beta subunit co-assembled into the receptor complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.