Abstract
Because of the smaller size of mobile devices, text entry with on-screen keyboards becomes inefficient. Therefore, we present CamK, a camera-based text-entry method, which can use a panel (e.g., a piece of paper) with a keyboard layout to input text into small devices. With the built-in camera of the mobile device, CamK captures images during the typing process and utilizes image processing techniques to recognize the typing behavior, i.e., extract the keys, track the user's fingertips, detect, and locate keystrokes. To achieve high accuracy of keystroke localization and low false positive rate of keystroke detection, CamK introduces the initial training and online calibration. To reduce the time latency, CamK optimizes computation-intensive modules by changing image sizes, focusing on target areas, introducing multiple threads, removing the operations of writing or reading images. Finally, we implement CamK on mobile devices running Android. Our experimental results show that CamK can achieve above 95 percent accuracy in keystroke localization, with only a 4.8 percent false positive rate. When compared with on-screen keyboards, CamK can achieve a 1.25X typing speedup for regular text input and 2.5X for random character input. In addition, we introduce word prediction to further improve the input speed for regular text by 13.4 percent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.