Abstract

In response to the inaccurate positioning of traditional camera relocation methods in scenes with large-scale or severe viewpoint changes, this study proposes a camera relocation method based on a cascaded graph neural network to achieve accurate scene relocation. Firstly, the NetVLAD retrieval method, which has advantages in image feature representation and similarity calculation, is used to retrieve the most similar images to a given query image. Then, the feature pyramid is employed to extract features at different scales of these images, and the features at the same scale are treated as nodes of the graph neural network to construct a single-layer graph neural network structure. Secondly, a top–down connection is used to cascade the single-layer graph structures, where the information of nodes in the previous graph is fused into a message node to improve the accuracy of camera pose estimation. To better capture the topological relationships and spatial geometric constraints between images, an attention mechanism is introduced in the single-layer graph structure, which helps to effectively propagate information to the next graph during the cascading process, thereby enhancing the robustness of camera relocation. Experimental results on the public dataset 7-Scenes demonstrate that the proposed method can effectively improve the accuracy of camera absolute pose localization, with average translation and rotation errors of 0.19 m and 6.9°, respectively. Compared to other deep learning-based methods, the proposed method achieves more than 10% improvement in both average translation and rotation accuracy, demonstrating highly competitive localization precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call