Abstract

Tracking persons with multiple cameras with overlapping fields of view instead of with one camera leads to more robust decisions. However, operating multiple cameras instead of one requires more processing power and communication bandwidth, which are limited resources in practical networks. When the fields of view of different cameras overlap, not all cameras are equally needed for localizing a tracking target. When only a selected set of cameras do processing and transmit data to track the target, a substantial saving of resources is achieved. The recent introduction of smart cameras with on-board image processing and communication hardware makes such a distributed implementation of tracking feasible. We present a novel framework for selecting cameras to track people in a distributed smart camera network that is based on generalized information-theory. By quantifying the contribution of one or more cameras to the tracking task, the limited network resources can be allocated appropriately, such that the best possible tracking performance is achieved. With the proposed method, we dynamically assign a subset of all available cameras to each target and track it in difficult circumstances of occlusions and limited fields of view with the same accuracy as when using all cameras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.