Abstract

There has been an increasing consensus in learning based face anti-spoofing that the divergence in terms of camera models is causing a large domain gap in real application scenarios. We describe a framework that eliminates the influence of inherent variance from acquisition cameras at the feature level, leading to the generalized face spoofing detection model that could be highly adaptive to different acquisition devices. In particular, the framework is composed of two branches. The first branch aims to learn the camera invariant spoofing features via feature level decomposition in the high frequency domain. Motivated by the fact that the spoofing features exist not only in the high frequency domain, in the second branch the discrimination capability of extracted spoofing features is further boosted from the enhanced image based on the recomposition of the high-frequency and low-frequency information. Finally, the classification results of the two branches are fused together by a weighting strategy. Experiments show that the proposed method can achieve better performance in both intra-dataset and cross-dataset settings, demonstrating the high generalization capability in various application scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.