Abstract

In this paper we address the problem of establishing a computational model for visual attention using cooperation between two cameras. More specifically we wish to maintain a visual event within the field of view of a rotating and zooming camera through the understanding and modeling of the geometric and kinematic coupling between a static camera and an active camera. The static camera has a wide field of view thus allowing panoramic surveillance at low resolution. High-resolution details may be captured by a second camera, provided that it looks in the right direction. We derive an algebraic formulation for the coupling between the two cameras and we specify the practical conditions yielding a unique solution. We describe a method for separating a foreground event (such as a moving object) from its background while the camera rotates. A set of outdoor experiments shows the two-camera system in operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.