Abstract

The camera output RGB signals do not directly corresponded to the tristimulus values based on the CIE standard colorimetric observer, i.e., it is a device-independent color space. For achieving accurate color information, we need to do color characterization, which can be used to derive a transformation between camera RGB values and CIE XYZ values. In this paper we set up a Back-Propagation (BP) artificial neutral network to realize the mapping from camera RGB to CIE XYZ. We used the Munsell Book of Color with total number 1267 as color samples. Each patch of the Munsell Book of Color was recorded by camera, and the RGB values could be obtained. The Munsell Book of Color were taken in a light booth and the surround was kept dark. The viewing/illuminating geometry was 0/45 using D 65 illuminate. The lighting illuminating the reference target needs to be as uniform as possible. The BP network was a 5-layer one and (3-10-10-10-3), which was selected through our experiments. 1000 training samples were selected randomly from the 1267 samples, and the rest 267 samples were as the testing samples. Experimental results show that the mean color difference between the reproduced colors and target colors is 0.5 CIELAB color-difference unit, which was smaller than the biggest acceptable color difference 2 CIELAB color-difference unit. The results satisfy some applications for the more accurate color measurements, such as medical diagnostics, cosmetics production, the color reappearance of different media, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call