Abstract

Accelerometers are commonly used to measure vibrations for condition monitoring in mechanical and civil structures; however, their high cost and point-based measurement approach present practical limitations. With rapid advancements in computer vision and deep learning, research into tracking the motion of individual pixels with vision cameras has increased. The recently developed CoTracker, a transformer-based model, has demonstrated excellence in motion tracking, yet its performance in measuring structural vibrations has not been fully explored. This paper investigates the efficacy of the CoTracker model in extracting full-field structural vibrations using cameras. It is initially applied to capture the dense point movements in video sequences of a cantilever beam recorded using a high-speed camera. Subsequently, modal analysis using delay-embedding dynamic mode decomposition (DMD) is conducted to extract modal parameters including natural frequencies, damping ratios, and mode shapes. The results, benchmarked against those from a reference accelerometer and the Finite Element Method (FEM) result, demonstrate CoTracker's high potential for general applicability in structural vibration measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.