Abstract

This study develops a camera-guided frequency-modulated continuous-wave (FMCW) radar to monitor vital signs. A red-green-blue-depth (RGB-D) camera estimates the human torso landmarks and a processing unit constantly adapts the radar beams to the direction of the subjects. To constantly optimize the regions of interest for monitoring respiratory rate (RR) and heart rate (HR), a novel method, coined “singular value-based point detection (SVPD),” is designed. Vital sign extraction is then followed as the last step. Experiments are conducted for the cases of single-subject (10 subjects, 31 scenarios, and 1550 repetitions) and dual-subject monitoring (6 subjects, 6 scenarios, and 90 repetitions). Average (RR, HR) accuracies of (97.68%, 85.88%), (90.02%, 86.05%), (96.71%, 89.50%), and (97.52%, 86.71%) are achieved for the range of distances (0.5-2.5 m), azimuth angles (0°–30°), elevation angles (−30°–+30°), and incident angles (−30°–+30°), respectively. The higher chest and upper abdomen are determined as the optimal regions for RR and HR estimation respectively, with average accuracies of 98.31% and 86.93%. Finally, the capability of dual-subject monitoring at various inter-subject distances (range of 20–70 cm) is confirmed with average accuracies of 92.26% and 73.23% for RR and HR respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call