Abstract

Four gas-permeable wrapping films exhibiting different degrees of water permeability (ranging from 1.6 to 500g/m2 per d) were tested to study their effect on soft-mold (Camembert-type) cheese-ripening dynamics compared with unwrapped cheeses. Twenty-three-day trials were performed in 2 laboratory-size (18L) respiratory-ripening cells under controlled temperature (6±0.5°C), relative humidity (75±2%), and carbon dioxide content (0.5 to 1%). The films allowed for a high degree of respiratory activity; no limitation in gas permeability was observed. The wide range of water permeability of the films led to considerable differences in cheese water loss (from 0.5 to 12% on d 23, compared with 15% for unwrapped cheeses), which appeared to be a key factor in controlling cheese-ripening progress. A new relationship between 2 important cheese-ripening descriptors (increase of the cheese core pH and increase of the cheese's creamy underrind thickness) was shown in relation to the water permeability of the wrapping film. High water losses (more than 10 to 12% on d 23) also were observed for unwrapped cheeses, leading to Camembert cheeses that were too dry and poorly ripened. On the other hand, low water losses (from 0.5 to 1% on d 23) led to over-ripening in the cheese underrind, which became runny as a result. Finally, water losses from around 3 to 6% on d 23 led to good ripening dynamics and the best cheese quality. This level of water loss appeared to be ideal in terms of cheese-wrapping film design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.