Abstract

- Camellia sinensis,or oolong tea, is a partially fermented version of tea used in Asian countries. The remarkable reduction activity of the tea extract can potentially be used for synthesizing nanoparticles. Recently,Camellia sinensishas gained popularity for the formulation of some metal nanoparticles. Aim To formulate green synthesis of copper oxide nanoparticles (CuONPs) mediated byCamellia sinensis(oolong tea) and assess its cytotoxicity and antioxidant properties. Materials & Methods Oolong tea extract is prepared and added to CuSO4 solution to synthesize CuO nanoparticles (CuONPs). The centrifugation pellet of CuONPs is collected and subjected to DPPH (2,2 - diphenyl -1- picrylhydrazyl hydrate)and H2O2 assays. The cytotoxicity screening is performed using zebrafish embryos. Results The reducing activity of oolong tea successfully synthesizes the copper nanoparticles. High values are obtained in DPPH (63% inhibition at 10µL concentration, 73% inhibition at 20µL, 80% at 30µL, 85% at 40µL and 90% at 50µL concentrations) and H2O2 (50% inhibition at 10µL concentration, 65% at 20µL, 68% at 30µL, 75% at 40µL and 80% at 50µL concentrations) assays. There are no morphological deformities in the zebrafish and no loss of cell viability or delayed hatching at low concentrations (below 4-8 µL), as shown by the viable embryos with no morphological deformities. Conclusion The study has evidenced high antioxidant activity and minimal cytotoxicity of CuO nanoparticles produced usingCamellia sinensis, thus proving it to be a good biomaterial for a wide range of biological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.