Abstract

Agriculture can provide biomass for bioproducts, biofuels and as energy feedstock with a low environmental impact, derived from carbohydrate, protein and oil annual crops, as well from lignocellulosic crops. This paper presents the thermophysical and chemical features of camelina and crambe straw depending on nitrogen fertilisation rate with a view to their further use in a circular bioeconomy. A two-factorial field experiment was set up in 2016, with camelina and crambe as the first factor and the N fertilizer rate (0, 60 and 120 kg·ha−1·N) as the second factor. Ash content in crambe straw (6.97% d.m.) was significantly higher than in camelina straw (4.79% d.m.). The higher heating value was higher for the camelina (18.50 MJ·kg−1·d.m.) than for the crambe straw (17.94 MJ·kg−1·d.m.). Sulphur content was also significantly higher in camelina than in crambe straw. An increase in nitrogen content with increasing fertilisation rate was visible in the straw of both species (from 1.19 to 1.33% d.m., for no fertilisation and for a rate of 120 kg·ha−1·N, respectively). Crambe straw contained more than five times more chlorine than camelina straw. In conclusion, despite certain adverse properties, camelina and crambe straw can be an alternative to other types of biomass, both for direct combustion, gasification and in the production of second-generation biofuels.

Highlights

  • The European Union is taking on increasingly ambitious challenges concerning a sustainable bioeconomy and closing the circulation of energy and materials used in production

  • Crambe straw contained more than five times more chlorine than camelina straw

  • A shortage of cereal straw caused by competition from other sectors, as well as the needs of sustainable agricultural production, can be compensated for by camelina and crambe straw, which have similar thermophysical and chemical properties

Read more

Summary

Introduction

The European Union is taking on increasingly ambitious challenges concerning a sustainable bioeconomy and closing the circulation of energy and materials used in production. It is estimated that the bioeconomy market is worth 2.4 billion euros and employs approx. The EU has set further ambitious goals concerning bioeconomy and sustainable development. The European Commission is developing new policies concerning renewable energies and agriculture (e.g. The European Green Deal, EU Biodiversity Strategy for 2030) and expects to spend approx. 1 trillion euros over the 10 years. The European Commission is developing the first. European Climate Law, with a binding climate neutrality target [3]. There is a need for feedstock for biobased materials and bioenergy supported by the Renewable Energy Directive (RED II). In RED II, the biofuels, bioliquids and biomass fuels produced from food or feed crops should be zero in 2030

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call