Abstract

Single-cell DNA methylation sequencing detects methylation levels with single-cell resolution, while this technology is upgrading our understanding of the regulation of gene expression through epigenetic modifications. Meanwhile, almost all current technologies suffer from the inherent problem of detecting low coverage of the number of CpGs. Therefore, addressing the inherent sparsity of raw data is essential for quantitative analysis of the whole genome. Here, we reported CaMelia, a CatBoost gradient boosting method for predicting the missing methylation states based on the locally paired similarity of intercellular methylation patterns. On real single-cell methylation datasets, CaMelia yielded significant imputation performance gains over previous methods. Furthermore, applying the imputed data to the downstream analysis of cell-type identification, we found that CaMelia helped to discover more intercellular differentially methylated loci that were masked by the sparsity in raw data, and the clustering results demonstrated that CaMelia could preserve cell-cell relationships and improve the identification of cell types and cell subpopulations. Python code is available at https://github.com/JxTang-bioinformatics/CaMelia. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.