Abstract

The influence of the recently proposed camel's back structure of the GaP conduction band edge on the exciton spectrum is investigated theoretically. The results are in good agreement with differential absorption data and strongly support a camel's back structure, with a 4 meV central hump. The computed exciton binding energy is 18.5 meV, and when combined with recent experimental data, indicates a binding of about 32 meV for the electron-hole liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.