Abstract
Neural Networks (NN) are a family of models for a broad range of emerging machine learning and pattern recondition applications. NN techniques are conventionally executed on general-purpose processors (such as CPU and GPGPU), which are usually not energy-efficient since they invest excessive hardware resources to flexibly support various workloads. Consequently, application-specific hardware accelerators for neural networks have been proposed recently to improve the energy-efficiency. However, such accelerators were designed for a small set of NN techniques sharing similar computational patterns, and they adopt complex and informative instructions (control signals) directly corresponding to high-level functional blocks of an NN (such as layers), or even an NN as a whole. Although straightforward and easy-to-implement for a limited set of similar NN techniques, the lack of agility in the instruction set prevents such accelerator designs from supporting a variety of different NN techniques with sufficient flexibility and efficiency. In this paper, we propose a novel domain-specific Instruction Set Architecture (ISA) for NN accelerators, called Cambricon, which is a load-store architecture that integrates scalar, vector, matrix, logical, data transfer, and control instructions, based on a comprehensive analysis of existing NN techniques. Our evaluation over a total of ten representative yet distinct NN techniques have demonstrated that Cambricon exhibits strong descriptive capacity over a broad range of NN techniques, and provides higher code density than general-purpose ISAs such as ×86, MIPS, and GPGPU. Compared to the latest state-of-the-art NN accelerator design DaDianNao [5] (which can only accommodate 3 types of NN techniques), our Cambricon-based accelerator prototype implemented in TSMC 65nm technology incurs only negligible latency/power/area overheads, with a versatile coverage of 10 different NN benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.