Abstract

The Cambrian radiation is characterized by the emergence of diverse bilaterian animal phyla and the establishment of complex marine ecosystems. The Guanshan Biota records an unusual ecological transition from trilobite- to brachiopod-dominated communities during Cambrian Stage 4. This community transition is accompanied by direct evidence of in situ biological interactions such as durophagous predation and kleptoparasitism. Here we describe new material from the Guanshan biota, focusing on an association of palaeoscolecidomorphs and brachiopods with parasitic tube worms that occur on micro-bedding planes. The bedding plane assemblages are dominated by the organophosphatic brachiopod Neobolus wulongqingensis encrusted with kleptoparasitic tube-dwelling worms, along with infaunal palaeoscolecidans. Taphonomic and sedimentological evidence indicates that these specimens are commonly preserved in life position, and thus the association between individuals represent potential biological interactions. This case study reveals that ecosystems during the early Cambrian exhibited a well-developed system of tiering and a complex trophic network, easily distinguished from the simple communities typical of precursor deposits in the Ediacaran. Brachiopods forming extremely dense concentrations on the sea floor are effectively acting as ecosystem engineers, not only to stabilize the soft-substrate seafloor, but also act as an alternative substrate for the oldest empirically demonstrated kleptoparasites. The in situ biological interactions preserved in the Guanshan Biota are critical for filling gaps in our knowledge of ecosystem complexity in the Cambrian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call