Abstract

We used triple-labeling immunohistochemistry in rat midbrain sections to identify dopaminergic neurons that contain either one or both of the calcium-binding proteins, calretinin (CR) and calbindin-D28k (CB). Midbrain dopaminergic neurons were immunohistochemically labeled for tyrosine hydroxylase (TH), CR, and CB. In the substantia nigra pars compacta (SNC), TH+/CR+/CB+ cells were clustered in two regions: the dorsal tier of the rostral SNC and the medial part of the intermediate SNC. The ventral tier of the rostral SNC mainly comprised both TH+/CR+/CB− and TH+/CR−/CB− cells. The lateral part of the intermediate SNC and the caudal SNC primarily consisted of TH+/CR−/CB− cells. Throughout the extent of the SNC, approximately half of the TH+ neurons were stained for neither CR nor CB, while the remaining TH+ populations were labeled for CR and/or CB. Throughout the ventral tegmental area, TH+/CR+/CB+ cells, TH+/CR+/CB− cells, TH+/CR−/CB+ cells, and TH+/CR−/CB− cells were found generally scattered, though the TH+/CR−/CB− cells were dominant in number. In the substantia nigra pars lateralis, interfascicular nucleus, and caudal linear nucleus, more than half of the TH+ cells were stained for both CR and CB. In the retrorubral field, two-thirds of the TH+ neurons contained neither protein. The present findings suggest that the SNC can be divided into subcompartments based on the distribution of dopaminergic neurons that contain calcium-binding proteins. Furthermore, because CR and CB likely contribute to calcium homeostasis by buffering intracellular calcium concentrations, midbrain dopaminergic neurons containing one or both of these calcium-binding proteins may have a higher calcium-buffering capacity than those lacking the two proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call