Abstract

BackgroundSomatic calreticulin (CALR), Janus kinase 2 (JAK2), and thrombopoietin receptor (MPL) mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN), suggesting that they activate common oncogenic pathways. Recent data have shown that MPL function is essential for CALR mutant-driven MPN. However, the exact role and the mechanisms of action of CALR mutants have not been fully elucidated.MethodsThe murine myeloid cell line 32D and human HL60 cells overexpressing the most frequent CALR type 1 and type 2 frameshift mutants were generated to analyze the first steps of cellular transformation, in the presence and absence of MPL expression. Furthermore, mutant CALR protein stability and secretion were examined using brefeldin A, MG132, spautin-1, and tunicamycin treatment.ResultsThe present study demonstrates that the expression of endogenous Mpl, CD41, and the key megakaryocytic transcription factor NF-E2 is stimulated by type 1 and type 2 CALR mutants, even in the absence of exogenous MPL. Mutant CALR expressing 32D cells spontaneously acquired cytokine independence, and this was associated with increased Mpl mRNA expression, CD41, and NF-E2 protein as well as constitutive activation of downstream signaling and response to JAK inhibitor treatment. Exogenous expression of MPL led to constitutive activation of STAT3 and 5, ERK1/2, and AKT, cytokine-independent growth, and reduction of apoptosis similar to the effects seen in the spontaneously outgrown cells. We observed low CALR-mutant protein amounts in cellular lysates of stably transduced cells, and this was due to accelerated protein degradation that occurred independently from the ubiquitin-proteasome system as well as autophagy. CALR-mutant degradation was attenuated by MPL expression. Interestingly, we found high levels of mutated CALR and loss of downstream signaling after blockage of the secretory pathway and protein glycosylation.ConclusionsThese findings demonstrate the potency of CALR mutants to drive expression of megakaryocytic differentiation markers such as NF-E2 and CD41 as well as Mpl. Furthermore, CALR mutants undergo accelerated protein degradation that involves the secretory pathway and/or protein glycosylation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-016-0275-0) contains supplementary material, which is available to authorized users.

Highlights

  • Somatic calreticulin (CALR), Janus kinase 2 (JAK2), and thrombopoietin receptor (MPL) mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN), suggesting that they activate common oncogenic pathways

  • JAK-dependent spontaneous transformation of 32D del52 CALR cells We analyzed the effect of stable ectopic expression of the two most prominent CALR mutants using IL3-dependent 32D and Ba/F3 cells, and analysis of these cells confirmed previous reports that this did not induce growth factor-independent proliferation in the majority of cells [14, 17]

  • These outgrown cells were sensitive to the JAK1/2 inhibitor ruxolitinib (Fig. 1c, d) which abrogated the growth of these cells completely (Fig. 1e)

Read more

Summary

Introduction

Somatic calreticulin (CALR), Janus kinase 2 (JAK2), and thrombopoietin receptor (MPL) mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN), suggesting that they activate common oncogenic pathways. Calreticulin (CALR) frameshift mutations were discovered in myeloproliferative neoplasms (MPN) and shown to be restricted to essential thrombocythemia (ET) and primary myelofibrosis (PMF) [1, 2]. Both neoplasms involve striking abnormalities of megakaryocytes [3, 4]. CALR, Janus kinase 2 (JAK2) V617F, and thrombopoietin receptor (MPL) mutations were mutually exclusive, suggesting that they all activate the JAK2-STAT signaling pathway to transform hematopoietic stem cells. Type 1 and 2 CALR mutations have been shown to carry prognostic relevance [6], but this was not found by all groups [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call