Abstract
Mutations of calreticulin (CALR) are detected in 25–30% of patients with essential thrombocythemia (ET) or primary myelofibrosis and cause frameshifts that result in proteins with a novel C-terminal. We demonstrate that CALR mutations activated signal transducer and activator of transcription 5 (STAT5) in 293T cells in the presence of thrombopoietin receptor (MPL). Human megakaryocytic CMK11-5 cells and erythroleukemic F-36P-MPL cells with knocked-in CALR mutations showed increased growth and acquisition of cytokine-independent growth, respectively, accompanied by STAT5 phosphorylation. Transgenic mice expressing a human CALR mutation with a 52 bp deletion (CALRdel52-transgenic mice (TG)) developed ET, with an increase in platelet count, but not hemoglobin level or white blood cell count, in association with an increase in bone marrow (BM) mature megakaryocytes. CALRdel52 BM cells did not drive away wild-type (WT) BM cells in in vivo competitive serial transplantation assays, suggesting that the self-renewal capacity of CALRdel52 hematopoietic stem cells (HSCs) was comparable to that of WT HSCs. Therapy with the Janus kinase (JAK) inhibitor ruxolitinib ameliorated the thrombocytosis in TG mice and attenuated the increase in number of BM megakaryocytes and HSCs. Taken together, our study provides a model showing that the C-terminal of mutant CALR activated JAK-STAT signaling specifically downstream of MPL and may have a central role in CALR-induced myeloproliferative neoplasms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.