Abstract

Calreticulin is a ubiquitously expressed Ca2+ binding protein of the endoplasmic reticulum which inhibits DNA binding and transcriptional activation by steroid hormone receptors. In this study the effects of calreticulin on tyrosine aminotransferase (TAT) gene expression in cultured McA-RH7777 hepatocytes was investigated. McA-RH7777 cells were stably transfected with calreticulin expression vector to generate cells overexpressing the protein. The transcriptional activity of the TAT gene, which is glucocorticoid-sensitive and cAMP-dependent, was investigated in the mock transfected McA-RH7777 and in cells overexpressing calreticulin (designated McA-11 and McA-17). In the presence of dexamethasone or the cAMP analog (CTP-cAMP) expression of the TAT gene was induced in mock transfected McA-RH7777 cells by approximately 4.5 and 5 fold, respectively. In McA-11 and McA-17 cells, overexpressing calreticulin, glucocorticoid-sensitive expression of the TAT gene was significantly inhibited, however, the CTP-cAMP-dependent expression of the TAT gene was not affected. The ability of calreticulin to inhibit glucocorticoid-sensitive TAT gene expression but not the cAMP-dependent expression of the gene suggests that the protein affects specifically the action of transcription pathways involving steroid receptors or transcription factors containing KxFF(K/R)R-like motifs. Calreticulin may play an important role in the regulation of glucocorticoid-sensitive pathway of expression of the hepatocytes specific genes during development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.