Abstract
Calponin 3 (CNN3) is an F-actin-binding protein that regulates actin cytoskeletal rearrangement. However, the role of CNN3 in cancer cell invasion and resistance to chemotherapeutic agents has not yet been investigated. The present study was undertaken to investigate whether CNN3 influences cancer-related phenotypes in gastric cancer. We demonstrate that CNN3 contributes to cell invasion and resistance to doxorubicin in gastric cancer. CNN3 expression was markedly elevated in highly invasive cancer cell lines compared to less invasive or noninvasive cancer cell lines. Depletion of CNN3 protein suppressed the invasive ability of gastric cancer cells. The highly invasive MKN-28 gastric cancer cells were more resistant to doxorubicin than the noninvasive MKN-45 cells; however, knockdown of CNN3 expression in MKN-28 cells resensitized them to doxorubicin treatment. Taken together, our results suggest that CNN3 plays a key role in invasiveness and doxorubicin resistance in gastric cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.