Abstract

This study proposes a design concept for an Al-Si-Mg ternary alloy to achieve both high strength and laser-based powder bed fusion (PBF-LB) processability using calculation of phase diagrams (CALPHAD). The thermodynamic calculations using the CALPHAD method evaluated the Al-10Si-4.5Mg (wt%) alloy composition for strengthening by both the Si and Mg2Si phases and high PBF processability by reducing the risk of hot tearing behind the small freezing range of 27 °C and crack susceptibility index (|dT/d(Fs1/2)|) of 77 °C. The PBF-LB Al-10Si-4.5Mg alloy sample (processed by laser power of 128 W and laser scanning velocity of 1000 mm/s) exhibited a fine three-phase microstructure and exceptional hardness of 199 HV. No hot tearing occurred, whereas many cracks preferentially propagated along the melt pool boundaries during the PBF-LB process. The severe lateral cracking resulted in a maximum relative density of 96 % in the Al-10Si-4.5Mg alloy samples. Preferential cracking could be responsible for the localization of the relatively coarse particles of the brittle Mg2Si phase in the cellular microstructures of the melt pool boundaries. Understanding the lateral cracking mechanism can provide new insights into alloy modification using the controlled solidification path to avoid a specific two-phase eutectic reaction (L→α-Al+Mg2Si) to improve the PBF processability. A modified alloy composition of Al-10Si-3Mg (wt%) was assessed using the CALPHAD approach. PBF-LB processing using the modified alloy powder alleviated cracking and improved the maximum relative density to 98 % for the PBF-LB manufactured samples. This result accentuated the validity of the design strategy for Al-Si-Mg ternary alloy utilizing the CALPHAD method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call