Abstract

CALPHAD uncertainty quantification (UQ) is the foundation of materials design with quantified confidence. We report a framework and software packages to enable CALPHAD UQ assessment and calculation using commercial CALPHAD software (Thermo-Calc). This Bayesian inference framework is coupled with a Markov chain Monte Carlo algorithm to establish uncertainty traces with a given thermodynamic database file (TDB) and corresponding experimental data points. This general framework is demonstrated with the Ni–Cr binary system. The algorithm is firstly validated on synthetic data with known ground truth. Then it is applied to real experimental data to generate posterior traces. We develop a file format named TDBX, which provides a single source of truth by combining the original TDB content and the traces for each assessed Gibbs energy parameter. CALPHAD UQ calculations are performed based on the TDBX file, from which uncertainties for phase boundaries, enthalpy curves, and solidification range are collected as examples of basic design parameters. This TDBX file with corresponding scripts are made open-source. The combination of CALPHAD UQ assessments and calculations connected by TDBX supports uncertainty-assisted modeling, enabling the integrated application of modern design with uncertainty methodologies to computational materials design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.