Abstract

Type 2 diabetes mellitus (T2DM) can lead to death without treatment and it has been predicted that the condition will affect 215 million people worldwide by 2010. T2DM is a multifactorial disorder whose precise genetic causes and biochemical defects have not been fully elucidated, but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of noncoding polymorphisms in CAPN10 to be functionally associated with T2DM while the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. Here we review recent studies, which in addition to the latter enzyme, have linked calpain 5, calpain 3, and its splice variants, calpain 2 and calpain 1 to T2DM-related metabolic pathways along with T2DM-associated phenotypes, such as obesity and impaired insulin secretion, and T2DM-related complications, such as epithelial dysfunction and diabetic cataract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call