Abstract
The effects of cAMP-dependent protein kinase (cAMP-PK) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation on the calpain-mediated degradation of microtubule-associated protein 2 (MAP-2) were studied. Both cAMP-PK and CaMKII readily phosphorylated MAP-2. However, cAMP-PK phosphorylated MAP-2 to a significantly greater extent than did CaMKII (4.5 mol 32P/mol MAP-2 and 1.4 mol 32P/mol MAP-2, respectively). Phosphorylation of MAP-2 by cAMP-PK, but not by CaMKII, significantly inhibited the calpain-induced hydrolysis of MAP-2. These results demonstrate that the phosphorylation of sites on the MAP-2 molecule accessible to cAMP-PK, but not to CaMKII, result in increased resistance to calpain proteolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.