Abstract

Endometrial receptivity damage caused by impaired decidualization may be one of the mechanisms of infertility in endometriosis (EMs). Our previous study demonstrated that Calpain-7 (CAPN7) is abnormally overexpressed in EMs. Whether CAPN7 affects the regulation of decidualization and by what mechanism CAPN7 regulates decidualization remains to be determined. In this study, we found CAPN7 expression decreased during human endometrial stromal cell (HESC) decidualization in vitro. CAPN7 negatively regulated decidualization in vitro and in vivo. We also identified one conserved potential PEST sequence in the AKT1 protein and found that CAPN7 was able to hydrolyse AKT1 and enhance AKT1's phosphorylation. Correspondingly, CAPN7 notably promoted the phosphorylation of Forkhead Box O1 (FoxO1), the downstream of AKT1 protein, at Ser319, leading to increased FoxO1 exclusion from nuclei and attenuated FoxO1 transcriptional activity in decidualized HESC. In addition, we detected endometrium CAPN7, p-AKT1, and p-FoxO1 expressions were increased in EMs. These data demonstrate that CAPN7 negatively regulates HESC decidualization in EMs probably by promoting FoxO1's phosphorylation and FoxO1 nuclear exclusion via hydrolyzing AKT1. The dysregulation of CAPN7 may be a novel cause of EMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call