Abstract

Aldosterone is a steroid hormone important in the regulation of blood pressure. Aberrant production of aldosterone results in the development and progression of diseases including hypertension and congestive heart failure; therefore, a complete understanding of aldosterone production is important for developing more effective treatments. Angiotensin II (AngII) regulates steroidogenesis, in part through its ability to increase intracellular calcium levels. Calcium can activate calpains, proteases classified as typical or atypical based on the presence or absence of penta-EF-hands, which are involved in various cellular responses. We hypothesized that calpain, in particular calpain-10, is activated by AngII in adrenal glomerulosa cells and underlies aldosterone production. Our studies showed that pan-calpain inhibitors reduced AngII-induced aldosterone production in 2 adrenal glomerulosa cell models, primary bovine zona glomerulosa and human adrenocortical carcinoma (HAC15) cells, as well as CYP11B2 expression in the HAC15 cells. Although AngII induced calpain activation in these cells, typical calpain inhibitors had no effect on AngII-elicited aldosterone production, suggesting a lack of involvement of classical calpains in this process. However, an inhibitor of the atypical calpain, calpain-10, decreased AngII-induced aldosterone production. Consistent with this result, small interfering RNA (siRNA)-mediated knockdown of calpain-10 inhibited aldosterone production and CYP11B2 expression, whereas adenovirus-mediated overexpression of calpain-10 resulted in increased AngII-induced aldosterone production. Our results indicate that AngII-induced activation of calpain-10 in glomerulosa cells underlies aldosterone production and identify calpain-10 or its downstream pathways as potential targets for the development of drug therapies for the treatment of hypertension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.