Abstract

Novel multifunctional biocomposite materials that mimic the properties of bone are the need of the hour. In view of this, the current work is focused on the fabrication of a snail shells derived europium-substituted hydroxyapatite (Eu-HAP)/poly(3,4-propylenedioxythiophene) (PProDOT)/Calotropis gigantea fiber (CGF) ternary composite on titanium (Ti) for biomedical applications. The structural, morphological, mechanical, electrochemical, and biological properties of the as-developed coatings on Ti were characterized. The obtained results clearly confirmed the formation and properties of the ternary composite (Eu-HAP/PProDOT/CGF). The presence of CGF, an exceptional reinforcement material, in the ternary composite is proven to improve mechanical and biological properties compared to other coatings (i.e., coating without CGF). Also, electrochemical studies revealed better anticorrosion properties of the composite-coated Ti in a simulated body fluid (SBF) solution. Similarly, the presence of Eu-HAP and PProDOT in the composite is clearly evident from the antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and also by the cell proliferation and cell adhesion by the MTT assay test. Thus, we suggest that the fabricated Eu-HAP/PProDOT/CGF ternary composite with mechanical, corrosion resistance, and biocompatible properties might be an appropriate candidate for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.