Abstract

Biological membranes play an important role in determining the activity and selectivity of antimicrobial host defense peptides (AMPs). Several biophysical methods have been developed to study the interactions of AMPs with biological membranes. Isothermal titration calorimetry and differential scanning calorimetry (ITC and DSC, respectively) are powerful techniques as they provide a unique label-free approach. ITC allows for a complete thermodynamic characterization of the interactions between AMPs and membranes. DSC allows one to study the effects of peptide binding on the packing of the phospholipids in the membrane. Used in combination with mimetic models of biological membranes, such as phospholipid vesicles, the role of different phospholipid headgroups and distinct acyl chains can be characterized. In these protocols the use of ITC and DSC methods for the study of peptide-membrane interactions will be presented, highlighting the importance of membrane model systems selected to represent bacterial and mammalian cells. These studies provide valuable insights into the mechanisms involved in the membrane binding and perturbation properties of AMPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.