Abstract

Complexation of three kinds of tris(imidazolyl)calix[6]arenes containing alternate p-substituents (Calix-tBu, R(1) = R(2) = tert-butyl; Calix-NH(2), R(1) = tert-butyl, R(2) = NH(2); Calix-NO(2), R(1) = tert-butyl, R(2) = NO(2)) with Zn(ClO(4))(2)(H(2)O)(6) in acetonitrile, methanol, and THF was investigated via isothermal titration calorimetry (ITC). For the coordination of these calixarene ligands to Zn(II) in acetonitrile, typical one-phase exothermic titration curves were obtained, indicating the formation of 1:1 ligand-Zn(II) complexes accompanied by large conformational changes of the ligands. In contrast, the complexation in methanol was endothermic and dominated by favorable entropy changes. The entropy gains were achieved by extensive desolvation from both Zn(II) and the ligands. ITC measurements suggest a 2:1 ligand-Zn(II) complex formation in THF in the presence of excess ligands (Calix-NH(2) and Calix-NO(2)). The 2:1 complexes were converted to 1:1 complexes upon further addition of Zn(ClO(4))(2)(H(2)O)(6). The results indicate the important role of a coordinating solvent (acetonitrile) for direct formation of the 1:1 complexes under the conditions of excess ligand. Complexation of a ditopic ligand (Calix-Tri) with three triazole moieties on the wider rim was also studied via ITC. The first coordination of the imidazole moieties to Zn(II) was an exothermic process. This was followed by the entropically favorable coordination of the triazole moieties to the divalent cation. We have also investigated exchange of the fourth ligand (H(2)O) of the Zn(II) complex of Calix-NH(2) with butylamine, heptylamine, acetonitrile, and acetamide in a noncompetitive solvent, THF. The ΔH(0) tended to decrease upon increasing the electron-pair-donating ability of the guest ligand, whereas it was also affected by an entropic term due to restricted rotation of the guest ligand inside the calixarene cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.