Abstract

The binding of horse ferricytochrome c to yeast cytochrome c peroxidase at pH 6.0 in 8.7 mM phosphate buffer (0.0100 M ionic strength) is characterized by a small, unfavorable enthalpy change (+1.91 +/- 0.16 kcal mol-1) and a large, positive entropy change (+37 +/- 1 eu). The free energy of binding depends strongly upon ionic strength, increasing from -9.01 to -4.51 kcal mol-1 between 0.0100 and 0.200 M ionic strength. The increase in free energy is due solely to the change in entropy over this ionic strength range, with the entropy change decreasing from 37 +/- 1 to 22 +/- 3 eu between 0.0100 and 0.200 M ionic strength. The observed enthalpy change remains constant over the same ionic strength range. At 0.0100 M ionic strength, complex formation is accompanied by the release of 0.54 +/- 0.11 proton, causing a variation in the observed enthalpy of reaction depending upon the buffer. After accounting for proton binding to the buffer, the corrected values for the enthalpy and entropy of binding are +2.84 +/- 0.26 kcal mol-1 and +21 +/- 3 eu, respectively. At 0.05 M ionic strength, the observed change in heat capacity, delta Cp, for the reaction between horse ferricytochrome c and cytochrome c peroxidase is essentially zero, 1.6 +/- 9.6 cal mol-1 K-1. The corrected delta Cp for binding is -28 +/- 10 cal mol-1 K-1 after accounting for proton binding to the buffer. No evidence for formation of a 2:1 horse ferricytochrome c/cytochrome c peroxidase complex was obtained in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call