Abstract
The enthalpy change for chain propagation in the polymerization of bovine tubulin has been studied directly by stopped-flow microcalorimetry at 17 degrees and 25 degrees, and found to be 0 +/- 1 kcal per mol of 6S tubulin dimer at both temperatures. Substantial heat evolution with a half-time of decay of approximately 1 hr was observed w-en tubulin was injected into the calorimeter. This heat was shown to result from contamination of the tublin by small amounts of some material from the crude brain homogenate from which the tubulin was prepared, and to be totally unconnected with microtubule assembly. Model calculations of nucleated polymerization processes reveal that the van't Hoff enthalpy calculated from the temperature dependence of the critical polymerization concentration is a complicated function of the separate enthalpy changes for nucleation and chain propagation. The published values of this quantity for tubulin probably pertain primarily to the nucleation process. It is shown that our observation of a propagation enthalpy change of vanishingly small size is not necessarily inconsistent with the reported van't Hoff enthalpies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.