Abstract

The binding of ferric ions, chelated with nitrilotriacetate, to human serum transferrin (hTF) has been studied using ultrasensitive titration calorimetry. Studies were done in both the presence and the absence of the synergistic bicarbonate anion. It was found that the C-site of hTF is capable of weakly binding bicarbonate (K of 250 M-1, delta H of -8 kcal) at the binding site even before ferric ion is added, although this does not happen to the same extent at the N-site. When preinsertion of the bicarbonate ion occurs, then ferric ion can subsequently bind very quickly to the C-site. Although the chelated ferric ion can bind weakly to the N-site in a fast reaction, the insertion of the bicarbonate ion occurs subsequently in a slow endothermic reaction. Binding of ferric ion to both sites is quickly reversible in the absence of bicarbonate but becomes kinetically controlled for long periods of time once bicarbonate has inserted into the metal-binding site due to the long time required for release of ferric ion. Estimates of the heats of binding to each site, apparent binding constants, and heat capacities of binding are made for different sets of solution conditions. Results from this study are compared to earlier results with ovotransferrin (Lin, L.-N., Mason, A. B., Woodworth, R. C., & Brandts, J. F. (1991) Biochemistry 30, 11660-11669), with major differences and some similarities noted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call