Abstract
Direct measurement by oxide melt solution calorimetry of energetics of mixing in rare earth and yttrium doped zirconia, hafnia, and ceria systems provides support for spectroscopic and computational studies of the location and clustering of vacancies in these systems. Strongly negative heats of mixing are seen when the vacancy is transferred from being nearest neighbor to Y or RE in the sesquioxide to being nearest neighbor to Zr or Hf in the cubic solid solution. In the absence of such redistribution, small positive enthalpies of mixing are seen in CeO2-YO1.5 and CeO2-REO.15 systems. Strongly positive enthalpies of mixing are seen in CeO2-ZrO2, which has a large difference in cation sizes and no vacancy formation. The system Ce0.8Y0.2O1.9-Zr0.8Y0.2O1.9 shows small positive heats of formation with less destabilization in the Ce-rich region, suggestive of "scavenging" of oxygen vacancies by Zr. The calorimetric data obtained in these studies offer direct comparison with the results of computations on defect clusters and their binding energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.