Abstract

AbstractThe curing reactions of epoxy resin with aliphatic diamines and the reaction of phenyl glycidyl ether with butylamine as a model for the curing reactions were investigated with a differential scanning calorimeter (DSC) operated isothermally. The heat of reaction of phenyl glycidyl ether with butylamine is equal to 24.5 ± 0.6 kcal/mole. The rate of reaction was followed over the whole range of conversion for both model and curing reactions. The reactions are accelerated by the hydrogen‐bond donor produced in the system. The rate constants based on the third‐order kinetics were determined and discussed for the model reaction and for the chemically controlled region of curing reactions. The activation energies for these rate constants are 13‐14 kcal/mole. At a later stage of conversion, the curing reactions become controlled by diffusion of functional groups. The final extent of conversion is short of completion for most isothermally cured and even for postcured samples because of crosslinking. It was quantitatively indicated that the final conversion of isothermal cure corresponds to the transition of the system from a viscous liquid to a glass on the basis of the theory of glass transition temperature of crosslinked polymer systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.