Abstract

Pancreatic lipase (PNLIP) is a digestive enzyme that is a potential drug target for the treatment of obesity. A better understanding of its regulation mechanisms would facilitate the development of new therapeutics. Recent studies indicate that intestinal lipolysis by PNLIP is reduced by Angiopoietin-like protein 4 (ANGPTL4), whose N-terminal domain (nANGPTL4) is a known inactivator of lipoprotein lipase (LPL) in blood circulation and adipocytes. To elucidate the mechanism of PNLIP inhibition by ANGPTL4, we developed a novel approach, using isothermal titration calorimetry (ITC). The obtained results were compared with those of well-described inhibitors of PNLIP – ε-polylysine (EPL), (−)-epigallocatechin-3-gallate (EGCG) and tetrahydrolipstatin. We demonstrate that ITC allows to investigate PNLIP inhibition mechanisms in complex substrate emulsions and that the ITC-based assay is highly sensitive - the lowest concentration for quantification of PNLIP is 1.5 pM. Combining ITC with surface plasmon resonance and fluorescence measurements, we present evidence that ANGPTL4 is a lipid-binding protein that influences PNLIP activity through interactions with components of substrate emulsions (bile salts, phospholipids and triglycerides), and this promotes the aggregation of triglyceride emulsions similarly to the PNLIP inhibitors EPL and EGCG. In the absence of substrate emulsion, unlike in the case of LPL, ANGPTL4 did not induce the inactivation of PNLIP. Our data also prove that due to various interactions with components of substrate systems, the effect of a PNLIP inhibitor depends on whether its effect is measured in a complex substrate emulsion or in a simple substrate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.