Abstract

The solid-state ternary complex of terbium chloride with L-tyrosine and glycine, [Tb(Tyr)(Gly)3Cl3·3H2O], was synthesized and characterized. Using a solution-reaction isoperibol calorimeter, the enthalpy of reaction for the following reaction, TbCl3·6H2O(s)+Tyr(s)+3Gly(s)=Tb(Tyr)(Gly)3Cl3·3H2O(s)+3H2O(l), was determined to be (5.1±0.6) kJ mol-1. The standard enthalpy of formation of Tb(Tyr)(Gly)3Cl3-3H2O at T=298.15 K has been derived as -(4267.3±2.3) kJ mol-1. The thermal decomposition kinetics of the complex was studied by non-isothermal thermogravimetry in the temperature range of 325-675 K. Two main mass loss stages existed in the process of the decomposition of the complex, the kinetic parameters for the second stage were analyzed by means of differential and integral methods, respectively. Comparing the results of differential and integral methods, mechanism functions of the thermal decomposition reaction for its second stage were proposed. The kinetic equation can be expressed as: dα/dt=Aexp(-E/RT)(1-α)2. The average values of the apparent activation energy E and pre-exponential factor A were 213.18 kJ mol-1 and 2.51·1020 s-1, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call