Abstract

Details of the coordination chemistry of europium complexes with methanediphosphonic acid (MDPA), vinylidene-1,1-diphosphonic acid (VDPA), and 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic aqueous solutions have been investigated by titration calorimetry and laser-induced fluorescence. For the 1:1 complexes, thermodynamic parameters and complex hydration are consistent with those previously reported for europium complexes with the carboxylate structural analog malonate. In the 1:2 complexes, markedly different thermodynamic parameters and cation dehydration are observed. The second diphosphonate ligand adds to the 1:1 complex displacing four additional water molecules from the primary coordination sphere (as compared with two for the addition of a second malonate). This reaction is also characterized by a nearly zero entropy change. The results are rationalized using molecular mechanics to suggest an unusual geometry in which the diphosphonate ligands and bound water molecules are appreciably segregated in the europium coordination sphere. Intramolecular hydrogen bonding and second hydration sphere ordering are suggested to explain the low complexation entropies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.