Abstract

Calorie restriction (CR) extends lifespan in yeast, worms, flies and mammals, suggesting that it acts via a conserved mechanism. In yeast, activation of the NAD-dependent histone deacetylase, Sir2, by CR is thought to increase silencing at the ribosomal DNA, thereby reducing the recombination-induced generation of extrachromosomal rDNA circles, hence increasing replicative lifespan. Although accumulation of extrachromosomal rDNA circles is specific to yeast aging, it is thought that Sirtuin activation represents a conserved longevity mechanism through which the beneficial effects of CR are mediated in various species. We show here that growing yeast on 0.05 or 0.5% glucose (severe and moderate CR, respectively) does not increase silencing at either sub-telomeric or rDNA loci compared with standard (2% glucose) media. Furthermore, rDNA silencing was unaffected in the hxk2Δ, sch9Δ and tor1Δ genetic mimics of CR, but inhibited by FOB1 deletion. All these interventions extend lifespan in multiple yeast backgrounds, revealing a poor correlation between rDNA silencing and longevity. In contrast, CR and deletion of the FOB1, HXK2, SCH9 and TOR1 genes, all significantly reduced rDNA recombination. This silencing-independent mechanism for suppressing rDNA recombination may therefore contribute to CR-mediated lifespan extension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.