Abstract

AbstractCaloric restriction (CR) is proposed to decrease tumorigenesis through a variety of mechanisms including effects on glycolysis. However, the understanding of how CR affects the response to cancer therapy is still rudimentary. Here, using the Eµ-Myc transgenic mouse model of B-cell lymphoma, we report that by reducing protein translation, CR can reduce expression of the prosurvival Bcl-2 family member Mcl-1 and sensitize lymphomas to ABT-737–induced death in vivo. By using Eµ-Myc lymphoma cells lacking p53, we showed that CR mimetics such as 2-deoxyglucose led to a decrease in Mcl-1 expression and sensitized lymphoma cells to ABT-737–induced death independently of p53. In keeping with this, Eµ-Myc lymphoma cells lacking the BH3-only proapoptotic members Noxa, Puma, or Bim were also sensitized by CR mimetics to ABT-737–induced death. Remarkably, neither the loss of both Puma and Noxa, the loss of both Puma and Bim, nor the loss of all three BH3-only proteins prevented sensitization to ABT-737 induced by CR mimetics. Thus, CR can influence Mcl-1 expression and sensitize cells to BH3 mimetic–induced apoptosis, independently of the main BH3-only proteins and of p53. Exploiting this may improve the efficiency of, or prevent resistance to, cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.