Abstract
We describe magneto-, baro-, and elastocaloric effects (MCEs, BCEs, and eCEs) in materials, which possess both discontinuous (first-order) and continuous (second-order) magnetic phase transitions. Our ab initio theory of the interacting electrons of materials in terms of disordered local moments has produced explicit mechanisms for the drivers of these transitions, and here, we study associated caloric effects in three case studies where both types of transition are evident. Our earlier work had described FeRh’s magnetic phase diagram and large MCE. Here, we present calculations of its substantial BCE and eCE. We describe the MCE of dysprosium and find very good agreement with experimental values for isothermal entropy (ΔSiso) and adiabatic temperature (ΔTad) changes over a large temperature span and different applied magnetic field values. We examine the conditions for optimal values of both ΔSiso and ΔTad that comply with a Clausius–Clapeyron analysis, which we use to propose a promising elastocaloric cooling cycle arising from the unusual dependence of the entropy on temperature and biaxial strain found in our third case study—the Mn3GaN antiperovskite. We explain how both ΔSiso and ΔTad can be kept large by exploiting the complex tensile strain–temperature magnetic phase diagram, which we had earlier predicted for this material and also propose that hysteresis effects will be absent from half of the caloric cycle. This rich and complex behavior stems from the frustrated nature of the interactions among the Mn local moments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.