Abstract

We construct a Lax pair with spectral parameter for the elliptic Calogero-Moser Hamiltonian systems associated with each of the finite-dimensional Lie algebras, of the classical and of the exceptional type. When the spectral parameter equals one of the three half periods of the elliptic curve, our result for the classical Lie algebras reduces to one of the Lax pairs without spectral parameter that were known previously. These Calogero-Moser systems are invariant under the Weyl group of the associated untwisted affine Lie algebra. For non-simply laced Lie algebras, we introduce new integrable systems, naturally associated with twisted affine Lie algebras, and construct their Lax operators with spectral parameter (except in the case of G 2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.