Abstract

Calnuc (nucleobindin-1, nucb1) is a Ca2+ -binding protein involved in the etiology of many human diseases. To understand the functions of calnuc, we have identified a nesfatin-1-like peptide (NLP) in its N terminus that is proteolyzed by a convertase enzyme in the secretory granules of cells. Mutational studies confirm the presence of a proteolytic cleavage site for proprotein convertase subtilisin/kexin type 1 (PCSK1). We demonstrate that NLP regulates Gαq-mediated intracellular Ca2+ dynamics, likely via a G-protein-coupled receptor. NLP treatment to carcinoma cell lines (SCC131 cells) promotes the expression of regulators of cell cycle, proliferation, and clonogenicity by the AKT/mTOR pathway. NLP is causative of augmented migration and epithelial-mesenchymal transition (EMT), illustrating its metastatic propensity and establishing its tumor promotion ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.