Abstract

In plants, defence against specific isolates of a pathogen can be triggered by the presence of a corresponding race-specific resistance gene, whereas resistance of a more broad-spectrum nature can result from recessive, presumably loss-of-regulatory-function, mutations. An example of the latter are mlo mutations in barley, which have been successful in agriculture for the control of powdery mildew fungus (Blumeria graminis f. sp. hordei; Bgh). MLO protein resides in the plasma membrane, has seven transmembrane domains, and is the prototype of a sequence-diversified family unique to plants, reminiscent of the seven-transmembrane receptors in fungi and animals. In animals, these are known as G-protein-coupled receptors and exist in three main families, lacking sequence similarity, that are thought to be an example of molecular convergence. MLO seems to function independently of heterotrimeric G proteins. We have identified a domain in MLO that mediates a Ca2+-dependent interaction with calmodulin in vitro. Loss of calmodulin binding halves the ability of MLO to negatively regulate defence against powdery mildew in vivo. We propose a sensor role for MLO in the modulation of defence reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call