Abstract

In the current study, we show that bone morphogenetic proteins (BMPs) play a role in hematopoiesis that is independent of their function in specifying ventral mesodermal fate. When BMP activity is upregulated or inhibited in Xenopus embryos hematopoietic precursors are specified properly but few mature erythrocytes are generated. Distinct cellular defects underlie this loss of erythrocytes: inhibition of BMP activity induces erythroid precursors to undergo apoptotic cell death, whereas constitutive activation of BMPs causes an increase in commitment of hematopoietic progenitors to myeloid differentiation and a concomitant decrease in erythrocytes that is not due to enhanced apoptosis. These blood defects are observed even when BMP activity is misregulated solely in non-hematopoietic (ectodermal) cells, demonstrating that BMPs generate extrinsic signals that regulate hematopoiesis independent of mesodermal patterning. Further analysis revealed that endogenous calmodulin-dependent protein kinase IV (CaM KIV) is required to negatively modulate hematopoietic functions of BMPs downstream of receptor activation. Our data are consistent with a model in which CaM KIV inhibits BMP signals by activating a substrate, possibly cAMP-response element-binding protein (CREB), that recruits limiting amounts of CREB binding protein (CBP) away from transcriptional complexes functioning downstream of BMPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.