Abstract
The major neuronal gap junction protein connexin36 (Cx36) exhibits the remarkable property of "run-up", in which junctional conductance typically increases by 10-fold or more within 5-10min following cell break-in with patch pipettes. Such conductance "run-up" is a unique property of Cx36, as it has not been seen in cell pairs expressing other connexins. Because of the recent observation describing CaMKII binding and phosphorylation sites in Cx36 and evidence that calmodulin dependent protein kinase II (CaMKII) may potentiate electrical coupling in neurons of teleosts, we have explored whether CaMKII activates mammalian Cx36. Consistent with this hypothesis, certain Cx36 mutants lacking the CaMKII binding and phosphorylation sites or wild type Cx36 treated with certain cognate peptides corresponding to binding or phosphorylation sites blocked or strongly attenuated run-up of junctional conductance. Likewise, KN-93, an inhibitor of CaMKII, blocked run-up, as did a membrane permeable peptide corresponding to the CaMKII autoinhibitory domain. Furthermore, run-up was blocked by phosphatase delivered within the pipette and not affected by treatment with the phosphatase inhibitor okadaic acid. These results imply that phosphorylation by CaMKII strengthens junctional currents of Cx36 channels, thereby conferring functional plasticity on electrical synapses formed of this protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.