Abstract

The present studies describe a new function for calmodulin-dependent protein kinase II (CaM-KII) in signal transduction leading to apoptosis. Both tumor necrosis factor alpha (TNF) and UV light rapidly stimulated Ca2+-independent activity of CaM-KII in the monocytic leukemia, U937. Two mechanistically different inhibitors of CaM-KII blocked activation of CaM-KII and prevented DNA fragmentation and death. Activation of CaM-KII during apoptosis and inhibition of DNA fragmentation by the two CaM-KII inhibitors were reproduced in several other lines including KGla, HL-60, and YAC-1. However, K562, which is relatively resistant to apoptosis induced by either TNF or UV light, did not activate CaM-KII in response to these stimuli. A variant derived from U937 that is resistant to TNF- or UV light-induced apoptosis also lacked a CaM-KII response. Activation of Cam-KII was blocked by two protease inhibitors, VAD-fmk and TPCK, but not by other inhibitors of serine proteases. Both inhibitors of CaM-KII and the protease inhibitors blocked activation of AP24, a serine protease originally isolated from apoptotic cells that induces DNA fragmentation in nuclei. Our evidence supports a model in which proteolytic activity functions upstream of CaM-KII. This kinase then leads to activation of AP24, which transmits signals to the nucleus to initiate DNA fragmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.