Abstract

The intestinal brush-border membrane contains a high concentration of calmodulin bound to a 105,000 dalton (105 kDa) protein. Binding of radioiodinated calmodulin to this protein does not require calcium but is inhibited by trifluoperazine and excess unlabelled calmodulin. Recent evidence suggests that the 105 kDa protein in conjunction with calmodulin may be involved in the regulation of calcium transport across the brush-border membrane. In this report, we evaluated the binding of the 105 kDa protein to other radioiodinated calcium-binding proteins including the vitamin D-dependent intestinal calcium-binding protein. We observed that troponin C and S100 beta protein both bound strongly to the 105 kDa protein. The binding of S100 beta was inhibited by EGTA, but was little affected by trifluoperazine and excess unlabelled S100 beta, whereas that of troponin C was inhibited by trifluoperazine and excess unlabelled troponin C, but was little affected by EGTA. Both troponin C and S100 beta bound to a large number of proteins to which calmodulin did not bind. The vitamin D-dependent calcium-binding protein (calbindin) from chick intestine and rat kidney also bound to the 105 kDa protein, albeit more weakly than troponin C, S100 beta and calmodulin. The binding of the calbindins was increased by EGTA and was little affected by trifluoperazine and excess unlabelled calbindin. Parvalbumin, rat osteocalcin, and alpha-lactalbumin showed little binding to any brush-border membrane protein. Our results indicate that the 105 kDa calmodulin-binding protein of the intestinal brush border can bind to a variety of calcium-binding proteins all of which contain homologous regions thought to be the calcium-binding sites. Only the binding of troponin C resembles the binding of calmodulin, however, in being inhibited by trifluoperazine and excess unlabelled ligand. The functional significance of these observations in terms of regulating calcium transport across the brush-border membrane remains to be established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.